skip to main content


Search for: All records

Creators/Authors contains: "Martin, Corey R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    A new self-activated X-ray scintillator, BaWO 2 F 4 , with an excellent photoluminescence quantum efficiency is reported. Hydrothermally grown single crystals, space group P 2/ n , exhibit a 3D framework structure containing isolated WO 2 F 4 octahedra. BaWO 2 F 4 exhibits green emission under UV light with a high quantum yield of 53% and scintillates when exposed to X-rays(Cu). 
    more » « less
  3. Abstract

    Cooperative behavior and orthogonal responses of two classes of coordinatively integrated photochromic molecules towards distinct external stimuli were demonstrated on the first example of a photo‐thermo‐responsive hierarchical platform. Synergetic and orthogonal responses to temperature and excitation wavelength are achieved by confining the stimuli‐responsive moieties within a metal–organic framework (MOF), leading to the preparation of a novel photo‐thermo‐responsive spiropyran‐diarylethene based material. Synergistic behavior of two photoswitches enables the study of stimuli‐responsive resonance energy transfer as well as control of the photoinduced charge transfer processes, milestones required to advance optoelectronics development. Spectroscopic studies in combination with theoretical modeling revealed a nonlinear effect on the material electronic structure arising from the coordinative integration of photoresponsive molecules with distinct photoisomerization mechanisms. Thus, the reported work covers multivariable facets of not only fundamental aspects of photoswitch cooperativity, but also provides a pathway to modulate photophysics and electronics of multidimensional functional materials exhibiting thermo‐photochromism.

     
    more » « less
  4. Abstract

    Cooperative behavior and orthogonal responses of two classes of coordinatively integrated photochromic molecules towards distinct external stimuli were demonstrated on the first example of a photo‐thermo‐responsive hierarchical platform. Synergetic and orthogonal responses to temperature and excitation wavelength are achieved by confining the stimuli‐responsive moieties within a metal–organic framework (MOF), leading to the preparation of a novel photo‐thermo‐responsive spiropyran‐diarylethene based material. Synergistic behavior of two photoswitches enables the study of stimuli‐responsive resonance energy transfer as well as control of the photoinduced charge transfer processes, milestones required to advance optoelectronics development. Spectroscopic studies in combination with theoretical modeling revealed a nonlinear effect on the material electronic structure arising from the coordinative integration of photoresponsive molecules with distinct photoisomerization mechanisms. Thus, the reported work covers multivariable facets of not only fundamental aspects of photoswitch cooperativity, but also provides a pathway to modulate photophysics and electronics of multidimensional functional materials exhibiting thermo‐photochromism.

     
    more » « less
  5. null (Ed.)
    Metal node engineering in combination with modularity, topological diversity, and porosity of metal–organic frameworks (MOFs) could advance energy and optoelectronic sectors. In this study, we focus on MOFs with multinuclear heterometallic nodes for establishing metal−property trends, i.e. , connecting atomic scale changes with macroscopic material properties by utilization of inductively coupled plasma mass spectrometry, conductivity measurements, X-ray photoelectron and diffuse reflectance spectroscopies, and density functional theory calculations. The results of Bader charge analysis and studies employing the Voronoi–Dirichlet partition of crystal structures are also presented. As an example of frameworks with different nodal arrangements, we have chosen MOFs with mononuclear, binuclear, and pentanuclear nodes, primarily consisting of first-row transition metals, that are incorporated in HHTP-, BTC-, and NIP-systems, respectively (HHTP 3− = triphenylene-2,3,6,7,10,11-hexaone; BTC 3− = 1,3,5-benzenetricarboxylate; and NIP 2− = 5-nitroisophthalate). Through probing framework electronic profiles, we demonstrate structure–property relationships, and also highlight the necessity for both comprehensive analysis of trends in metal properties, and novel avenues for preparation of heterometallic multinuclear isoreticular structures, which are critical components for on-demand tailoring of properties in heterometallic systems. 
    more » « less
  6. Abstract

    Confinement‐imposed photophysics was probed for novel stimuli‐responsive hydrazone‐based compounds demonstrating a conceptual difference in their behavior within 2D versus 3D porous matrices for the first time. The challenges associated with photoswitch isomerization arising from host interactions with photochromic compounds in 2D scaffolds could be overcome in 3D materials. Solution‐like photoisomerization rate constants were realized for sterically demanding hydrazone derivatives in the solid state through their coordinative immobilization in 3D scaffolds. According to steady‐state and time‐resolved photophysical measurements and theoretical modeling, this approach provides access to hydrazone‐based materials with fast photoisomerization kinetics in the solid state. Fast isomerization of integrated hydrazone derivatives allows for probing and tailoring resonance energy transfer (ET) processes as a function of excitation wavelength, providing a novel pathway for ET modulation.

     
    more » « less
  7. Abstract

    Confinement‐imposed photophysics was probed for novel stimuli‐responsive hydrazone‐based compounds demonstrating a conceptual difference in their behavior within 2D versus 3D porous matrices for the first time. The challenges associated with photoswitch isomerization arising from host interactions with photochromic compounds in 2D scaffolds could be overcome in 3D materials. Solution‐like photoisomerization rate constants were realized for sterically demanding hydrazone derivatives in the solid state through their coordinative immobilization in 3D scaffolds. According to steady‐state and time‐resolved photophysical measurements and theoretical modeling, this approach provides access to hydrazone‐based materials with fast photoisomerization kinetics in the solid state. Fast isomerization of integrated hydrazone derivatives allows for probing and tailoring resonance energy transfer (ET) processes as a function of excitation wavelength, providing a novel pathway for ET modulation.

     
    more » « less
  8. Abstract

    Materials with dynamically controlled electronic structures (i.e., upon external stimuli) are at the forefront of the renewable energy sector with applications as memory devices, smart supercapacitors, programmable solar cells, and field‐effect transistors. Moreover, their continued development as device components is critical for the field of optoelectronics since their performance is comparable, or could even surpass, the current benchmarks. Adaptive electronic properties are the main focus of this review that discusses recent developments in the modulation of electronic behavior that can be tuned using external stimuli in metal–organic frameworks (MOFs), covalent–organic frameworks (COFs), primarily inorganic hybrids, polymers, and graphitic‐type materials. Triggers to achieve “dynamic” behavior discussed within this manuscript are primarily light‐based switches that include different classes of photochromic molecules such as naphthalene diimide, viologen, diarylethene, azobenzene, and spiropyran. The effect of material dimensionality and photoswitch connectivity achieved through integration of photochromic moieties inside 0D, 1D, 2D, and 3D hybrid matrices is discussed. This review showcases the prospects of advancing the material and energy landscapes through employment of structural motifs with adaptive electronic structures occurring as a function of their dimensionality and connectivity.

     
    more » « less